Anion-Cation Contrast in Solute Solvation

Stefan Hervø-Hansen | June 11, 2023 | MSL2023

Drug and materials discovery is a complex, expensive, and time-consuming

Scannell et al. Nat Rev Drug Discov. 2012

Solvation free energies to understand underlying physics of liquid structure

Mobley et al. J Phys Chem B. 2008

Thermodynamic framework for solvation thermodynamics

$$ \beta \mu^{\mathrm{ex}} = \mu_{\mathrm{r}} + \langle \Delta U_{\mathrm{a}} \rangle_{\lambda=1} + RT \ln \left\langle e^{\beta \left( \langle U_{\mathrm{a}} \rangle - U_{\mathrm{a}} \right)} \right\rangle_{\lambda=1} $$ Energy-Representation Theory of Solvation allows a straightforward route into such an energetic decomposition: $$ \Delta G_{\mathrm{sol}} = \sum_{\mathrm{species},\ i} \Delta G_{\mathrm{sol}, i} $$ $$ \Delta G_{\mathrm{sol},i}=\int \rho(\epsilon) \epsilon \ \mathrm{d}\epsilon - \int \mathcal{F}(\epsilon) \ \mathrm{d}\epsilon $$

Widom, J Chem Phys. 1963; van der Vegt & Nayar, J Phys Chem B. 2017; Matubayasi, BCSJ. 2019

Acknowledgements

Mikael Lund
Jan Heyda
Nobuyuki Matubayasi

Setschenow coefficients

$$ \ln\left(\frac{S(c_s)}{S(0)}\right) = -k_s c_s = -\frac{\Delta \Delta G_{\mathrm{sol}}}{RT} $$ $$ \Delta \Delta G_{\mathrm{sol}}=\Delta G_{\mathrm{sol}}(c_s)-\Delta G_{\mathrm{sol}}(0) $$

Hervø-Hansen et al. Phys. Chem. Chem. Phys. 2022

Anion-cation contrast

$$ \Delta G_{\mathrm{sol}} = \cancel{\Delta G_{\mathrm{self}}} + \Delta G_{\mathrm{anion}} + \Delta G_{\mathrm{cation}} + \Delta G_{\mathrm{water}} $$ $$ k_s = \frac{1}{RT} \left( \frac{\partial \Delta G_{\mathrm{anion}}}{\partial c_{s}} + \frac{\partial \Delta G_{\mathrm{cation}}}{\partial c_{s}} + \frac{\partial \Delta G_{\mathrm{water}}}{\partial c_{s}} \right) $$

Hervø-Hansen et al. Phys. Chem. Chem. Phys. 2022

Interaction-component analysis

\[\begin{aligned} \mu^{\mathrm{ex}} = & \int_{-\infty}^{\epsilon_{\mathrm{max}}} \varepsilon \rho_1(\varepsilon) \ \mathrm{d}\varepsilon + \int_{-\infty}^{\epsilon_{\mathrm{max}}} \mathcal{F}(\rho_0, \rho_1;\varepsilon) \ \mathrm{d}\varepsilon \\ & +\int_{\epsilon_{\mathrm{max}}}^{\infty} \mathcal{F}(\rho_0, \rho_1;\varepsilon) \ \mathrm{d}\varepsilon \end{aligned} \]

Interaction-component analysis: The interaction component

Hervø-Hansen et al. Phys. Chem. Chem. Phys. 2022

Cation contribution: Binding

Hervø-Hansen et al. Phys. Chem. Chem. Phys. 2022

Interaction-component analysis: The excluded-volume component

Hervø-Hansen et al. Phys. Chem. Chem. Phys. 2022

Interaction-component analysis: The excluded-volume ion component

Hervø-Hansen et al. Phys. Chem. Chem. Phys. 2022

Interaction-component analysis: The excluded-volume water component

Hervø-Hansen et al. Phys. Chem. Chem. Phys. 2022

Conclusions

  1. Free-energy calculations reveal ions can be highly different in their perturbation mechanism.
  2. Effects not found at full coupling between the solute and solvent (like cavitation) correlates with the Setschenow coefficient.